Calculations for Water Main Disinfection:

Given a 500 ft section of 8 inches water main, how much 65% Available Chlorine (HTH) is needed to provide an initial application of 50 mg/L?

(HTH = High Test Hypochlorite = Calcium Hypochlorite)

- 1. Convert 8" to feet (ft) = (8 in / 12 in = 0.667 ft).

 Diameter (d) = 0.667 ft.

 Radius (r) = 0.333 ft (½ of diameter)
- 2. Find the volume (V) in cubic feet (ft³)

 Volume = area of cross section of pipe (A) x Length (L) $V = A \times L$ Area = ((pi) x the radius squared ($r^2 = r$ times itself) $A = (r^2$ It is given that (= 3.14
- $V (ft^3) = 3.14 \text{ x} (r^2) \text{ x Length} \text{ or } 3.14 \text{ x} (0.333 \text{ x} 0.333) \text{ x } 500 = \underline{174.1 \text{ ft}^3}$
- 3. Find the amount of gallons of water in the line.

 Conversion factor for water equals 7.48 gal per cubic feet (ft³)

 Gallons equal Volume (ft³) x Conversion Factor for Water [Gallons/ (ft³)]

 Gallons = 174.1 ft³ x 7.48 gallons/ (ft³)

 Gallons = 1,302.2 gallons
- 4. Find lbs of 100% Available Chlorine
 Available Chlorine is the actual chlorine available for disinfection
 lbs of 100% Available Chlorine = Volume x Dose x Density of Water
 Volume = Millions of Gallons (MG) = 1302.2 / 1,000,000 = 0.0013 MG
 Dose = the concentration of the disinfectant in the water (mg/L) = 50 mg/L
 Density of Water = 8.34 lbs/gallon
 lbs of 100% Available Chlorine = 0.0013 x 50 x 8.34 = 0.54 lbs
- 5. Find lbs of 65% Available Chlorine.
 lbs of 65% Available Chlorine =
 lbs of 100% Available Chlorine/0.65 Available Chlorine
 lbs of 65% Available Chlorine = 0.54 lbs/ 0.65 Available Chlorine =
 0.83 lbs of 65 % Available Chlorine
- 6. Find ounces of 65% Available Chlorine.
 ounces of 65% Available Chlorine =
 lbs of 65% Available Chlorine x 16 oz/lb
 ounces of 65% Available Chlorine = 0.83 lbs x 16 oz/lb = 13.3 oz

The following information is for water flowing at a velocity of 2.5 ft/sec through the indicated water main diameter:

MAIN SIZE	GALLONS PER MINUTE
2''	24
4''	96
6''	220
8''	392
10''	612

12''......880

Example:

Given a 500 ft section of 8 in water main, what volume of water is equal to a flow velocity of 2.5 ft/sec?

- 1. Convert 8" to feet = (8 in / 12 in = 0.667 ft). Diameter (d) = 0.667 ft. Radius (r) = 0.333 ft ($\frac{1}{2}$ of diameter)
- Find: Volumetric Flow as cubic feet per second (ft³/sec) 2. Volumetric Flow (ft^3/sec) = Velocity (ft/sec) x Cross Sectional Area (ft²) Velocity = 2.5 ft/secGiven: (= 3.14)**Cross Sectional Area =** $(x r^2 = 3.14 \times 0.333 \times 0.333 = 0.348 \text{ ft}^2)$ Volumetric Flow = $2.5 \times 0.348 = 0.87 \text{ ft}^3/\text{sec}$
- Find Volumetric Flow as gal/sec: **3. Conversion factor for water equals =** 7.48 gal per cubic foot (ft³) $gal/sec = ft^3/sec \times 7.48 gal/ft^3 =$ $0.87 \times 7.48 = 6.5 \text{ gal/sec}$
- 4. Find Volumetric Flow as gal/min $gal/min = gal/sec \times 60 sec/min =$ $6.5 \times 60 = 390 \text{ gal/min}$

Disinfection With Clorox

This method utilizes a "relational factoring" type of equation to determine the volume of Clorox (b) needed to give an initial concentration of disinfectant (C) in a particular volume (V) of water. The equation is based on mixing 1 fluid ounce of Clorox in 1 gallon of water which yields an initial concentration of 410 mg/L per gallon or [(410 mg/L) (gallon)]. Clorox has a sodium hypochlorite (NaOCl) strength of about 5.25%.

If you know the volume of water to be treated and the desired initial concentration, then you may easily calculate the fluid ounces of Clorox required.

Example 1:

How many fluid ounces of Clorox must be added to 10,000 gallons of water to achieve an initial concentration of 410 mg/L?

OR 10,000 fluid ounces / 128 fluid ounces per gallon = <u>78 gallons</u>

Example 2:

How many fluid ounces of Clorox must be added to 1,000 gallons of water to achieve an initial concentration of 50 mg/L?

```
b = 1,000 \text{ gallons} \qquad x \qquad 50 \text{ mg/L} \qquad x \qquad \underline{\text{fluid ounces}}  (410 \text{ mg/L}) \text{ (gallons)} b = \underline{122 \text{ fluid ounces}} OR \qquad 122 \text{ fluid ounces / 32 fluid ounces per quart} = \underline{3.8 \text{ quarts}}
```

It's as simple as that!